Meet the Endocrinologist: Joseph Takahashi, expert on the genetic and molecular basis of circadian rhythms

Meet Joseph Takahashi, Professor of Neuroscience at the Howard Hughes Medical Institute at UT Southwestern Medical Centre. His research focuses on the genetic and molecular basis of the circadian clock in mammals. He has been awarded the SfE Transatlantic Medal and will be delivering his Medal Lecture at SfE BES 2018, 19-21 November in Glasgow. In our latest interview, he tells us more about his career, research and what he is looking forward to at the SfE BES 2018 conference. 

Can you tell us a little about your current position and research?

I’m an Investigator in the Howard Hughes Medical Institute, and Professor and Chair of the Department of Neuroscience at the University of Texas Southwestern Medical Center in Dallas, Texas. My lab studies the genetic and molecular basis of the circadian clock in mammals. More broadly we are interested in the genetic basis of behavior. My lab is known for discovering the first circadian gene in mammals known as the Clock gene.

One of the initial surprises from cloning the mammalian clock genes was that they are ubiquitously expressed. This eventually led to the discovery that the circadian clock is cell autonomous and that virtually every cell in the body has the capacity for circadian oscillation. Thus, all of our major organ systems contain intrinsic circadian oscillators. This has led to a revolution in studies aimed at understanding the role of clocks in peripheral tissues as well as studies focused on understanding the systems level organisation of the multiple clocks in the body. The core circadian molecular pathway regulates thousands of genes in mammals, and this has led to the discovery of direct molecular links to a myriad of molecular, cellular and physiological pathways. These include direct links to endocrinology, metabolism, immune function, cell growth and cancer.

Can you tell us about your career path, and what you are most proud of?

I have been incredibly fortunate to have had great mentors and colleagues as well as research institutions and funding agencies that have supported me throughout my career.  In college, I was interested in biology, but did not know what careers one could pursue except for med school. Later I had the good fortune to do an independent research project and learned that one could go to graduate school in biology(!). That was the beginning of my research career.  I took a post-baccalaureate year to work with Patricia DeCoursey, one of the pioneers in mammalian circadian rhythms, and then went to work with Michael Menaker for graduate studies. Menaker was the perfect mentor for me. He had a free and open lab environment that encouraged creativity, independence and scale and automation. We pioneered long-term ex vivo culture of tissues that contained and expressed circadian rhythms in the late 1970’s. These initial forays continue to pay off decades later as the entire circadian field uses large-scale data collection, automation and long-term in vitro circadian models.

After graduate school, I did a 2-year post doc with Martin Zatz at the NIH where we worked on the pharmacology circadian rhythms in the chick pineal in vitro.  I was then recruited to Northwestern University by Fred Turek. As an independent faculty member at Northwestern, my lab focused on reductionist dissection of the circadian oscillator in the chick pineal.  In addition to pharmacology, we worked on the biochemistry of various circadian pathways in the pineal.  However, eventually we were stymied, and my interest in the molecular biology and genetics of circadian rhythms was growing.  We knew that molecules and genes had to be important for mammalian circadian rhythms, but how to get there?  That was the beginning of my ‘second career’ as a geneticist.  Ironically as an undergraduate, I was not very interested in molecular biology or genetics (I was interested in animal behavior), but luckily I ‘had’ to take these courses.

In 1990, Larry Pinto, Fred Turek and I decided to use mouse genetics to try to find circadian rhythm mutants. We collaborated with William Dove at the University of Wisconsin-Madison, and Martha Vitaterna conducted our first screen of mice that were ENU mutagenised in the Dove lab.  In our first screen, we isolated the Clock mutant mouse which has a 28-hour period length and a loss-of-rhythm phenotype in circadian activity.  This mutant mouse then provided the means to identify the Clock gene by positional cloning. The isolation of the Clock mutant and the positional cloning of gene was the crowning achievement of my lab.

What are you presenting in your Medal Lecture at SfE BES 2018?

I plan on giving an historical account of our forward genetic approach to finding clock genes in mammals. The effort to clone Clock was massive.  Ten members of my lab worked together as a team for three years to complete the project. In the 1990’s there was no genome sequence. The Clock gene turned out to be huge: it had 24 exons and covered over 90 kB of genomic DNA. Then I will discuss more recent molecular and genomic analyses of the circadian clock gene network. Finally, I will describe our new work on the importance of time and caloric restriction for aging and longevity.

What are you looking forward to at this year’s conference?

I am very much looking forward to seeing all the advances in the field of endocrinology as well as the plenary lectures.

What do you think are the biggest challenges in research right now?

It is of paramount importance to support research in basic science. It is very important to translate these basic science discoveries, but one must remember where these advances had their beginnings.  It is impossible to predict new discoveries and how they will impact medicine in the future.

What do you think will be the next major breakthrough in your field?

Many important breakthroughs in the circadian field will be their connections to all aspects of cell biology, cancer and metabolism. New views of metabolism and longevity are already being linked to circadian biology.

What do you enjoy most about your work?

I love the fact that we are supported to pursue knowledge and discovery of biological systems.  Making scientific discoveries is like a treasure hunt for adults.  It never gets old, and one discovery always opens the door to countless new questions.  Also, as an academic, we have intellectual freedom that is rare in other professions.

Who do you most admire professionally?

My role models have been: Seymour Benzer at CalTech, who pioneered genetic approaches to complex behaviors; Eric Kandel at Columbia, whose systematic and scholarly approach to understanding learning and memory in simple model systems was fundamental; and Denis Baylor at Stanford, whose biophysical analysis of phototransduction was a thing of beauty.

Any words of wisdom for aspiring researchers out there?

My mantra is:  Always begin with first principles. What I mean by this is that you must understand what you are doing. To an electrophysiologist or biophysicist this is self-evident. But in today’s world of molecular biology and informatics, the kits that you use in the lab and the computer programs that you employ are frequently applied without a fundamental understanding what they are doing and how they work.

 

You can hear Professor Takahashi’s SfE Transatlantic Medal Lecture, “Circadian Clock Genes and the Transcriptional Architecture of the Clock Mechanism” on Monday 19 November, in the Lomond Auditorium at 18:00. Find out more about the scientific programme for SfE BES 2018.

Meet the Endocrinologist: Stafford Lightman, expert on regulation of the hypothalamo-pituitary-adrenal axis

Meet Stafford Lightman, Professor of Medicine at the University of Bristol. His research focuses on understanding the role of the hypothalamo-pituitary-adrenal (HPA) axis in health and disease, and in particular its interface with stress and circadian rhythms and its effects mediated through glucocorticoid signalling. He has been awarded the SfE Medal and will be delivering his Medal Lecture at SfE BES 2018, 19-21 November in Glasgow. In our latest interview, he tells us more about his career, research and what he is looking forward to at the SfE BES 2018 conference.

*Prof Lightman is pictured at the Goroka Festival, Papua New Guinea’s equivalent of Glastonbury! 

Can you tell us a little about your current position and research?

When I was appointed Professor of Medicine at the University of Bristol, very little endocrine research was going on there, which had the great advantage of providing me with a clean slate and the ability to develop my own research theme. Now I have a lab group that ranges from the very basic cell and molecular science through physiology, right up to clinical research. I really enjoy being able to translate up to humans and then back translate down again to animal models. Having a group of scientists and clinicians working together is a really exciting environment to work in.

Can you tell us a little about what inspired you into endocrinology?

I was always interested in human biology and my earliest research was in anthropology, which naturally led into human behaviour and to neuroscience. I initially wanted to be an academic clinical neurologist but at that time neurology research centred around the peripheral nervous system, and I was interested in the brain! The one way I could investigate brain function was through the window of hypothalamic-pituitary function, therefore I became a neuroendocrinologist. Since then I have been working at the interface of endocrinology and neuroscience, which I find fascinating.

What you are most proud of in your career so far?

I am most proud of the people that I have helped to train, who have gone on to do well afterwards. It is also really rewarding to have set up lots of collaborations with mathematicians, and fascinate them in the dynamics of hormones. They have of course also been very both for me and the subject, developing   the concept of hormone dynamics. With the exception of GnRH, endocrinology was often considered a homeostatic but relatively static science, where hormone levels are measured and found to be either too high or too low. This is clearly far from reality and trying to bring the idea of dynamic hormonal systems into the mainstream is something I have been very involved with.

Tell us what you enjoy about your role as President of the British Neuroscience Association (BNA)?

I love meeting lots of really interesting people. The brain is such an interesting area and I enjoy understanding how it interacts with all aspects of our lives. The BNA 2019 Festival of Neuroscience will be held in Dublin on 14-17 April 2019, and will be in collaboration with the British Society for Neuroendocrinology, and include a scientific symposium sponsored by the Society for Endocrinology. So, there will also be a strong element of endocrinology running throughout the meeting. However, it is a great event for bringing together lots of diverse areas of neuroscience.

What are you presenting in your Medal Lecture at SfE BES 2018?

I will be discussing how aspects of HPA physiology are governed by dynamics, from the stress response to the circadian rhythm. The underlying dynamics of this system are what allow us to be flexible and to maintain a homeostatic state. I will also be talking about improved ways of diagnosing endocrine disorders. If we can harness novel technologies to measure dynamic changes in hormone levels in patients at home, we can gather much better information for diagnosis and treatment.

What are you looking forward to at this year’s conference?

From my own point of view the best part of the conference will be discussing posters with young, enthusiastic scientists right at the start of their careers. The posters are a really exciting area where people are putting out new ideas, in all areas of endocrinology. I like to be educated, so enjoy going to posters in areas where I don’t know much and hearing about what people are doing and why they find it exciting.

What do you think are the biggest challenges in endocrinology right now?

I think there are two main challenges, one of which I alluded to earlier.

  1. In terms of HPA the challenge lies around how we can measure dynamic changes in hormone levels in patients at home. I think the whole field of medicine is moving away from keeping people in hospital, to do lots of blood tests, sending them home, calling them back in to discuss results and finding you don’t have the right answer. Diagnosis can then be prolonged, inaccurate and very expensive, all of which is bad for patient care. The real challenge is finding better ways of doing this, and doing it in patients at home.
  2. Another challenge concerns the best way to give glucocorticoid replacement therapy. There is currently great debate on this in the field but it is important that we find the answer. Poorly managed glucocorticoid replacement is associated with considerable morbidity and mortality, so lots of attention is focused on finding a better way of doing it.

What do you think will be the next major breakthrough in your field?

I think the ability to monitor patients’ hormone levels over a 24 hour period will be a major breakthrough, and will provide the basis for better understanding of normal physiology and better diagnostic methodologies.

We have been developing a wearable collecting device that can be worn by patients at home. Using this device, patients would need only a quick visit to have it fitted and another, 24 hours later to have it removed. This is sufficient to provide full tissue biochemistry over a 24 hour period. This would minimise the time in hospital and provide a personalised medicine approach with a wealth of data that gives an overall picture of the individual’s health. This type of approach could revolutionise diagnostics and really improve patient care.

Once we understand how to apply this technology we will have better more rational ways of targeting and timing treatments, to address the challenges mentioned in the previous question.

What do you enjoy most about your work?

I love the challenge of new ideas and using them to work out answers to important questions. It is also a pleasure and privilege to have the opportunity to work with great colleagues.

Who do you admire most in the world of endocrinology?

The first piece of endocrinology that ever excited me was Vincent Wigglesworth’s work on the hormone, ecdysone. He was a brilliant entomologist and his beautifully designed experiments on the extraordinary process of metamorphosis was a real eye opener. He was my first endocrine hero!

Any words of wisdom for aspiring endocrinologists out there?

Enjoy, enjoy, enjoy! You really need to enjoy your work, or you should be doing something else. I describe what I do as privileged play!

You can hear Professor Lightmans’s SfE Medal Lecture, “HPA activity: Don’t forget the dynamics” on Monday 19 November, in the Lomond Auditorium at 17:30. Find out more about the scientific programme for SfE BES 2018.